最小二乘法(英语:least squares method),又称最小平方法,是一种数学优化建模方法。它通过最小化误差的平方和寻找数据的最佳函数匹配。
最小化残差平方和来确定模型的各个参数($\beta_1, \beta_2, …., \beta_k$),
$$
\sum_{t=1}^T \varepsilon_t^2 = \sum_{t=1}^T (y_t -
\beta_{0} - \beta_{1} x_{1,t} - \beta_{2} x_{2,t} - \cdots - \beta_{k} x_{k,t})^2.
$$